

Direct Application Launch from
System Startup in Windows Vista
and Windows 7

March 12, 2010

Abstract

The Windows Vista® and Windows® 7 operating systems provide built-in support for
a fast system startup experience that boots or resumes directly into media or other
applications. This support, called direct application launch, is possible on PCs that are
running Windows Vista or Windows 7 by making simple changes to platform firmware
and underlying platform wake circuitry. This paper describes the changes in platform
hardware and firmware to support direct application launch that is based on button-
press or wireless receiver events. It provides guidelines for system designers and
firmware developers to implement platform support for direct application launch on
PCs that run Windows Vista or Windows 7.

This information applies to most versions of the following operating systems:
 Windows 7
 Windows Vista

Note: Direct Application Launch does not run on Windows 7 Starter Edition or
Windows Vista Starter Edition.

The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/system/vista/DirAppLaunch.mspx

References and resources discussed here are listed at the end of this paper.

Disclaimer: This document is provided “as-is”. Information and views expressed in this document, including
URL and other Internet Web site references, may change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal, reference purposes.

© 2010 Microsoft Corporation. All rights reserved.

http://www.microsoft.com/whdc/system/vista/DirAppLaunch.mspx

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 2

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

Document History

Date Change

March 12, 2010 Revised paper to indicate that Direct Application Launch works on
both Windows Vista and Windows 7, but does not apply to
Windows 7 Starter Edition or Windows Vista Starter Edition

November 18, 2005 First publication

Contents

Introduction ... 3
Advantages of Direct Application Launch in Windows Vista and Windows 7 3
Design Overview ... 5

Functional Block Components ... 5
General Design Approach and Event Flow ... 6

Implementation Details .. 6
Platform Hardware Support for the Application-Launch Button 6
Firmware Support .. 7

Firmware Functional Responsibilities .. 7
ACPI Support .. 7

Button ACPI Declaration .. 7
ACPI Method and Object Support ... 8
Other Firmware Changes ... 9
ACPI Driver Support ... 9
Retrieving the Button Descriptor .. 10

ACPI Handling of Button-Press Events ... 10
Application-Launch Button Event Notifications to Platform Software 11

User-Mode Software Notification Example... 11
Application-Launch Button-Event GUID .. 11
Application-Launch Button Notification and Data Payload 11

Button Agent and Application Launch ... 12
Example Configuration .. 13

Event Flows for Application-Launch Events ... 14
Run-time Application Launch Event Data Flow ... 14
Wake Button-Press Event Data Flow ... 15
System Start from S5 Button-Press Event Data Flow .. 17

Next Steps .. 18
Resources ... 18

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 3

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

Introduction

The Windows Vista® and Windows® 7 operating systems provide built-in support for
launching applications directly from system startup. Direct application launch
leverages existing Windows Vista and Windows 7 support for OnNow power
management initiatives and technologies, including the platform sleep states and
wake capabilities that are defined by the Advanced Configuration and Power
Interface (ACPI) specification and supported by the Windows Driver Model (WDM),
the underlying operating system, and platform hardware.

Manufacturers can take advantage of direct application launch in Windows Vista and
Windows 7 to add consumer-friendly application-access buttons through chassis front
panels or wireless remote controls to their system designs.

A common example of such a control is a media playback button. Typically, a media
button is dedicated either to starting the system from an off state or to waking the
system from a sleeping state and then entering a dedicated media playback mode.
Normally, resuming from sleep returns the system to the state and context from
which the operating system was suspended and booting the system from the off
state presents the logon or user’s desktop screen, depending on user account and
password configurations. However, the desired experience for systems that feature
media playback might be to start or wake the computer through a special-purpose
button and immediately (as soon as the system is running) present the user with a
media player or dedicated media shell.

This paper explores solutions that leverage the capabilities of a PC that is running
Windows Vista or Windows 7 to implement a fast system-startup-to-application-
launch experience through a single button press.

Advantages of Direct Application Launch in Windows Vista and
Windows 7

Implementing consumer application controls and system states by using the built-in
support for direct application launch from system startup provides numerous
benefits to both the system builder and the end user. This implementation:

• Uses a single instance of both the Windows Vista or Windows 7 operating system
and existing firmware:

• No dual boot screens.

• Ability to exit the media shell and return to the normal working environment
without rebooting.

• Windows desktop.

• Supports transitions from all system sleep states and soft-off states, including:

• Standby (ACPI S3).

• Hibernate (ACPI S4).

• Shutdown (ACPI S5).

• Operates after the system is already started to enable direct application launch
during run time.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 4

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

• Leverages investments in fast boot and resume initiatives to offer quick system
startup:

• Resume from standby (S3) ≤ 3 seconds.

• Resume from hibernate (S4) ≤ 10 to 13 seconds.

• Boot from off (S5) ≤ 18 to 25 seconds.

• Allows manufacturers to easily develop and innovate by supporting hardware
buttons, wireless receivers, or both.

• Allows for rich Windows power management support at run time:

• Optimal battery life on laptop designs.

• Ability for manufacturers to leverage the Windows Vista and Windows 7
power management infrastructure for further innovation and platform
support.

• Reduces complexity of manufacturer implementations:

• Supported by industry standards.

• No additional drivers or device support required for an additional operating
system, an alternate set of codecs, or an additional disk partition.

• Single operating system image to build, deploy, and support.

• Simple metaphor: Press a button and get an experience (quickly).

Windows Vista and Windows 7 eliminate some of the disadvantages of design
solutions that exist in the marketplace today. These solutions often require a
separate firmware boot environment, operating system, or disk partition to facilitate
quick system startup and to host the media shell, media applications, and digital
media content and metadata. Implementing such solutions imposes additional
burdens on manufacturers, including:

• No concurrent scenarios in alternate boot environment (for example, the user
cannot read e-mail while listening to music).

• Software licensing overhead.

• Separate, dedicated mini-firmware code.

• An additional disk partition.

• Another set of device drivers, operating system, codecs, and media application to
qualify and support.

• Duplicate disk imaging for each boot environment.

• Additional disk image size and factory build time and complexity.

• A fragmented, confusing user experience that requires the user to reboot to
switch between the Windows shell and the dedicated application environment,
which makes Windows experiences less available.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 5

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

Design Overview

This section provides high-level implementation details for the system-startup-to-
direct-application-launch solution in Windows Vista and Windows 7.

Functional Block Components

Direct application launch in Windows Vista and Windows 7 consists of three
fundamental functional blocks, as shown in Figure 1.

Platform

Operating

System

ACPI and other BIOS

Firmware

Chipset or Embedded

Controller

Target Application

Windows Vista or

Windows 7

User-mode Button

Agent

 - or –

ACPI Driver and

Button Device Object

User mode

Kernel mode

BIOS

Hardware

Component provided by:

OEM Installation

 or User

Microsoft

OEM

Application Launch

Button(s)

OEM-supplied

Component

Infrared or RF

Receiver

(optional)

Figure 1. System Startup and Application Launch Functional Blocks

Starting from the bottom of Figure 1, these components consist of:

• One or more special-purpose application-launch buttons and associated wake
circuitry in hardware.

Optionally, a wireless infrared or radio frequency (RF) receiver could be used in
place of or together with the application-launch button.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 6

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

• Platform firmware support to enable the button(s) or wireless receiver and
preserve the system wake source (that is, which button was pressed). This
includes ACPI and non-ACPI firmware support.

• Operating system components to retrieve the system wake source from firmware
and launch the target application.

General Design Approach and Event Flow

Support for system startup and direct application launch is relatively simple:

• The platform provides one or more special-purpose buttons or wireless receivers
(hereinafter collectively referred to as “buttons”) and the associated system-
wake circuitry. Each button is described with a new Plug and Play hardware ID
that the Windows ACPI driver recognizes and on which it loads the ACPI driver.

• Platform firmware enables the buttons to power on or to wake the system.
Firmware includes the capability to detect and preserve the system wake source
(that is, which button was pressed). This can include both ACPI and non-ACPI
firmware support.

• The ACPI firmware for the button also returns a buffer that indicates the
intended use of the button (such as a media button, Internet button, or calculator
button). The manufacturer assigns the actual value that is used for this
designation.

• When the system is booted, the Windows ACPI driver enumerates all instances of
the new application-launch button, retrieves each button’s intended function
value, and stores it in the registry.

• When the button is pressed, Windows Vista and Windows 7 use normal ACPI
mechanisms to send a Notify code to the button’s device object. The Windows
ACPI driver then triggers the Windows power manager to send a specialized
power event to any registered listeners. The event data payload includes the
unique button instance that was pressed.

• A user-mode button agent that is supplied by Windows Vista and Windows 7
receives this power management event (PME) notification and matches the
button instance ID to the target application as described in the registry. The
button agent then starts the target application.

Implementation Details

The example in this section describes a single button that is used to wake the system
and launch a media player application. In practice, any number of buttons can be
implemented and a button's key press can be associated with any application launch
or control event (such as Mail, Media Shell, Play, or Pause).

Platform Hardware Support for the Application-Launch Button

Platform hardware:

• Handles run-time user button-press events (from the ACPI S0 state) by asserting
the proper general-purpose event (GPE) and triggering the system control
interrupt (SCI).

• Wakes the system from a sleep state (ACPI S1-S4).

• Optionally, starts the system from soft off (ACPI S5).

For a specific implementation, the manufacturer determines whether the button
transitions from the off state or the sleep state.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 7

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

The application-launch button should normally be wired to any available GPE on an
ACPI-compatible chip set. It could also be wired to a laptop’s embedded controller
(EC) or to a general-purpose I/O (GPIO) in the chipset that can be programmed to
assert a GPE. The media button should be wired and the GPE should be programmed
to function only as a wake event, and never as a run-time-only event.

Firmware Support

Platform firmware support consists of both ACPI and non-ACPI firmware.

Firmware Functional Responsibilities

The system firmware:

• Declares the button object(s) in ACPI.

• Provides the button’s ACPI configuration and operational support.

• Correctly enables the special-purpose buttons, such as arming the button for
wake from ACPI sleep states or from the S5 state.

• Captures and correctly identifies the system-wake or startup button press.

• Preserves the wake-source event across the firmware power-on self-test (POST)
phase during transitions from the ACPI S4 or S5 states.

• Provides standard ACPI device configuration, method, and event support for the
button device, such as GPE handlers, embedded-controller _Qxx event handlers,
_STA and _HID methods, and so on.

• Provides the Microsoft-defined GHID method (shown in Figure 2 on the following
page) for retrieving the button’s intended function.

ACPI Support

Important

The sample implementation described in this paper and shown in Figure 2 depicts
pseudocode that is intended only for illustrative purposes. This sample is incomplete
and is not suitable for inclusion in production ACPI source language (ASL).

Button ACPI Declaration

A device that represents the media button is placed in the _SB scope of the ACPI
namespace, as shown in Figure 2. The button is described with a Plug and Play
hardware ID of PNP0C32. The operating system ejects a physical device object (PDO)
device node for this device, associates this device object with the Windows acpi.sys
driver, and loads the driver on this device as the functional device object (FDO).

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 8

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

Figure 2 shows a sample ACPI namespace for a direct application-launch button.

Device(_SB_PCI.LPC.EC_MBTN) { // media button wired on embedded

controller

 Name(_HID, PNP0C32) // HIDACPI button

 Name(_UID, 1) // unique instance ID

 Method(_STA, 0x0, NotSerialized) {

 Return(0x0F) // optional – do OEM-specific actions here

 }

 Name(_PRW, Package(2) {

 1, // bit 1 of GPE to enable system startup

 0x04} // can wake up from S4 state

)

 }

 Method (GHID, 0x0) { // returns descriptor of button instance

 If (<BTNW>) { // platform-specific wake source detection

 Notify(_SB_PCI.LPC.EC.MBTN, 0x02)

 }

 Return(Buffer(){0x01}) // UsageID of button; maps to app to launch

}

…

Scope(_GPE){ // Root-level event handlers

 Method(_L01) { // uses bit 1 of GP0_STS register

 If (<BTNW>) { // platform-specific wake source detection

 Notify(_SB_PCI.LPC.EC.MBTN, 0x02)

 }

 If (<BTNP>) { // platform-specific run-time press detection

 Notify(_SB_PCI.LPC.EC.MBTN, 0x80)

 }

 } // end of _L01 handler

} // end of _GPE scope

…

Method(_WAK, 0x1, NotSerialized) {

 If (<BTNW>) { // platform-specific wake source detection

 Notify(_SB_PCI.LPC.EC.MBTN, 0x02)

 }

}

Figure 2. Example ACPI Namespace

ACPI Method and Object Support

The following ACPI objects and methods are placed under the scope of the button
device in the ACPI namespace, as shown in Figure 2.

• _HID: This method is required. _HID must be described with the specific object
value for the HIDACPI button device Plug and Play hardware ID of PNP0C32.

• _UID: This method is optional. _UID returns the appropriate unique ID for the
media button device. _UID is required only if multiple instances of the same
device occur in the namespace. Note that _UID must evaluate to a decimal
numeric value.

• _STA: This method is optional. Note that after the operating system has detected
the presence of the direct application launch button and the HotStart service has
been configured to launch an application based on button press events for this
device, reporting that the button device is not present via _STA may not be used
to disable that event from triggering the associated application launch.

• _PRW: This method is required. _PRW returns the GPE pin and system wake level
for the button device. In most cases, the system wake level should be “S4”.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 9

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

• _PSW: This method is optional. The operating system runs this method to set the
device-specific registers to enable the wake circuitry for the button device.

• Event handling: A _GPE._Lxx, _GPE_Exx, or _Qxx event handler for the device is
required. <xx> corresponds to the GPE pin to which the button is connected and
is described in the _PRW package for the device. The event handler must issue
the following Notify codes to the application-launch button device object:

• Notify(<btn>, 0x80) whenever the button is pushed at run time.

• Notify(<btn>, 0x02) when firmware determines that the button-press event
was the system-wake event.

• GHID method: This method is required. The Microsoft-defined GHID method
indicates the desired function, or “role,” of the button, such as media, Internet,
or calculator. This description is used to help associate the button with the
correct application to launch. The GHID method returns a buffer that contains a
value that indicates the button function. The manufacturer chooses the actual
value, which can be mapped to the target application by using the Windows
registry. The GHID method can return a BYTE, WORD, or DWORD. The value must
be encoded in little-endian byte order (least significant byte first).
Implementation of the GHID method is shown in Figure 2 earlier in this paper.
The buffer returned by GHID must be in the form of a decimal number.

Other Firmware Changes

To enable the operating system to determine the source of the S0 transition,
hardware or firmware must detect and save the source of the wake event so that it
can be returned later during evaluation of the manufacturer-specific ASL
implementation, as illustrated by the BTNW placeholder method shown in Figure 2
earlier in this paper. If firmware fails to save the wake source, it cannot properly issue
the Notify codes that are described in this paper, so the system would wake but the
target application would not be launched. Care must be taken to ensure subsequent
button-press events do not overwrite the original wake source.

ACPI Driver Support

The ACPI driver acpi.sys:

• Retrieves the HID description for each unique button device that is described in
the ACPI namespace and makes this description available to the supplied user-
mode button agent or other user-mode components.

• Handles both run-time and wake button-press Notify events that are issued from
the platform’s ACPI namespace.

• Interfaces with the kernel power manager to issue power notifications of button-
press events.

Button Device Objects

The direct application-launch button device has the following Plug and Play hardware
ID:
 PNP0C32

The acpi.sys driver object creates one device object for each unique application-
launch button device that is declared in the ACPI namespace.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 10

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

Button Driver Interface Device Class

The device class for a direct application-launch button is as follows:

Application Launch Buttons

Class = AppLaunchButtonClass

ClassGuid 4D36E97D-E325-11CE-BFC1-08002BE10318

Retrieving the Button Descriptor

To properly identify the special-purpose button’s function (for example, a Media
button or an Internet button), firmware includes a value under each unique button
instance in the ACPI namespace to act as a descriptor. The manufacturer determines
the specific value, which can be configured through the Windows registry to launch
any target application.

When the ACPI driver initializes, it reads this value by evaluating the GHID method, a
Microsoft-defined ACPI method that returns a buffer that contains one or more
DWORDs that describe the button’s purpose.

The ACPI driver stores the contents of this buffer in the registry in the UserHidBlock
value under the device registry key. This is the key that is returned by
IoOpenDeviceRegistryKey(deviceObject), where <n> is the button's unique instance
ID:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\ACPI\PNP0C32\<n>

\Device Parameters

Name: UserHIDBlock

Type: REG_BINARY

Data: <UsageID>

ACPI Handling of Button-Press Events

Run-time button-press or system-wake events are conveyed from platform firmware
by using ACPI Notify codes. As part of the platform’s typical GPE or EC event handling,
the ACPI driver queues methods that correspond to the GPE index or EC query code
to run. Firmware ASL issues Notify events to the button driver from these _Lxx or
_Qxx methods. The Notify codes to be used are:

• Notify(btn, 0x80). A run-time button press occurred.

• Notify(btn, 0x02). A system-wake or power-on button press occurred.

When the Windows Vista or Windows 7 ACPI driver receives these events, it triggers a
corresponding power manager event from the Windows power manager. User-mode
software can then receive this event and launch the desired application.

Firmware must detect that the application-launch button started the system or
caused it to wake, and it must store the wake source until ACPI has initialized and can
consume that event. This may entail firmware boot code outside ACPI storing one or
more variables that ASL can later examine. An ASL method to examine such a variable
is suggested by the <BTNW> and <BTNP> placeholder methods shown in the sample
ASL in Figure 2 earlier in this paper. The system firmware developer determines the
exact implementation.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 11

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

Application-Launch Button Event Notifications to Platform Software

When the ACPI driver handles a Notify(btn, 0x80) or Notify(btn, 0x02) event, it calls
into the Windows kernel power manager to send a power-setting notification event
that is specific to the application-launch button press to any component that has
registered to receive these notifications.

This notification is available to kernel-mode device drivers or user-mode services and
applications. Any system software component can detect and act on these
application-launch button-press events, which provides maximum flexibility and
extensibility for platform development.

User-Mode Software Notification Example

To listen for application-launch button-press events, system software components
can register for notifications by using the standard Windows Vista and Windows 7
power function, RegisterPowerSettingNotification.

HANDLE RegisterPowerSettingNotification(

 IN HANDLE hRecipient,

 IN CONST LPGUID PowerSettingGuid,

 IN DWORD Flags);

In this function:

• The hRecipient parameter is a handle to the window or service that is requesting
the button-event notification.

• The PowerSettingGuid parameter is the GUID for the application-launch button-
event notification, defined as GUID_APPLAUNCH_BUTTON.

• The Flags parameter can be either DEVICE_NOTIFY_WINDOW_HANDLE or
DEVICE_NOTIFY_SERVICE_HANDLE to indicate whether the provided handle is for
a window or a service.

For more information about power management functions in Windows Vista and
Windows 7, see "Resources" at the end of this paper.

Application-Launch Button-Event GUID

The following GUID is the unique ID for registering for application-launch button-
press events:

GUID_APPLAUNCH_BUTTON

1A689231-7399-4E9A-8F99-B71F999DB3FA

Application-Launch Button Notification and Data Payload

A window is notified of an application-launch button-press event by a
WM_POWERBROADCAST message with a wParam of PBT_POWERSETTINGCHANGE.
The lParam for this message is a pointer to the following structure:

typedef struct {

 GUID PowerSetting;

 DWORD DataLength;

 UCHAR Data[1];

} POWER_SETTING_BROADCAST, *PPOWER_SETTING_BROADCAST;

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 12

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

The Data member of this structure points to a data payload that is delivered with
each notification of the application-launch button-press event. This data payload has
the following format:

typedef struct _APPLICATIONLAUNCH_SETTING_VALUE {

 //

 // System time when the most recent button press occurred.

 // Note that this is specified in 100ns internvals

 // since January 1, 1601.

 //

 LARGE_INTEGER ActivationTime;

 //

 // Reserved for internal use.

 //

 ULONG Flags;

 //

 // which instance of this device was pressed?

 //

 ULONG ButtonInstanceID;

} APPLICATIONLAUNCH_SETTING_VALUE, *PAPPLICATIONLAUNCH_SETTING_VALUE;

Button Agent and Application Launch

Windows Vista and Windows 7 provide a user-mode button agent that subscribes to
application-launch notifications from the Windows kernel power manager and
launches the application that is associated with a specific button Usage ID in the
Windows registry. This behavior is implemented as a task named HotStart that is
launched by Windows Task Manager when the user logs on. The HotStart task can be
viewed and configured in the Scheduled Tasks viewer management console in the
Performance and Maintenance Control Panel application.

Configuring the Target Application

The manufacturer can configure the application that is associated with a specific
Usage ID by using the following registry key:

HKLM\System\CurrentControlSet\Control\MobilePC\HotStartButtons\<UsageID>

<UsageID> corresponds to the value that is specified in the system’s ACPI namespace.
The GHID method returns this value for each application-launch button instance.
Note that this registry key is not present in the registry by default; it must be added
by the manufacturer when the system is configured to support direct application
launch.

The value for this key should contain the full path to the application to be launched,
including any command line parameters, as in the following example:

“C:\\Windows\\System32\\calc.exe”

Windows Vista and Windows 7 do not populate the application-launch button by
default, and so make no associations between Usage ID values and target
applications. The manufacturer can choose any value for Usage ID and map it to any
target application.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 13

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

Example Configuration

The following example demonstrates how to configure a system that implements a
direct application launch button to start an application. In this example:

• The BIOS returns the value 0x04 for the usage ID when the GHID method is
evaluated, as shown in Figure 2 earlier in this paper.

• Windows Media® Player is the application that is launched when the application
launch button is pressed.

To configure the HotStart task to launch Windows Media Player

1. Start the Registry Editor and select the following key:

HKLM\System\CurrentControlSet\Control

2. Add the following key:

MobilePC

3. Under the MobilePC key, add the following key:

HotStartButtons

4. Under the HotStartButtons key, add a key whose name matches the UsageID
returned by the BIOS GHID method for the button you are configuring. In this
example, the BIOS returns 0x04 for the UsageID.

4

5. Under the UsageID key added in step 4, add a new string value that is named
ApplicationPath.

6. Edit the default value for this key and set this value to the full path of the
application to launch:

C:\Program Files\windows media player\wmplayer.exe

Figure 3 shows an example of the new key in the Registry Editor window.

Figure 3. Example Configuration for Direct Application Launch

Preventing Startup of the HotStart Task

The HotStart task can be disabled through Group Policy by setting the following
registry keys:

<HKCU/HKLM>\Software\Microsoft\Windows\CurrentVersion\Policies\System

"NoHotStart"=dword:0

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 14

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

Event Flows for Application-Launch Events

The platform infrastructure that is described in this paper can be illustrated by tracing
the event flows through each part of the system.

Run-time Application Launch Event Data Flow

Figure 4 shows the steps that are taken when the application-launch event is initiated
at run time; that is, when the system is already in the S0 working state.

Platform ASL

ACPI Driver

Button Agent

User Mode

Kernel Mode

BIOS, ACPI

Platform

Hardware

Application-launch

Event

(Button or wireless)

Platform

Hardware

(EC or chipset)

To Wakeup/Sleep

Logic

Target

Application

6

2 1

5

3

7

4

Kernel Power

Manager

Registry

8

9

Infrared or

RF Receiver

Figure 4. Run-time Application Launch Event

Starting at the bottom of Figure 4:

1. With the system in the working (S0) state, the user presses the application-launch
button or activates the wireless remote control.

2. Platform hardware detects the button switch closure or wireless receiver event
and asserts the appropriate GPE, which in turn causes the SCI to be asserted.

3. The ACPI driver runs the SCI code and determines that GPEn has been asserted.

4. The ACPI interpreter runs the _L0n method as part of its normal ACPI interrupt
handling.

5. The ASL code for the _L0n method issues a Notify(btn, 0x80) event to the button
device to indicate that the button was pressed at run time.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 15

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

6. The ACPI driver calls a private interface into the kernel power manager to invoke
a power notification for the button-press event.

7. The kernel power manager sends an application-launch event to all registered
listeners.

8. The user-mode button agent receives the application-launch event, including the
unique instance ID of the button that was pressed. The button agent looks up the
application-launch string that is associated with this button’s instance ID.

9. The button agent then launches the target application.

Wake Button-Press Event Data Flow

Figure 5 shows the steps that are taken when the application-launch button is
pressed to start the system from the ACPI S1-S4 sleeping states.

Platform ASL

ACPI Driver

Button Agent

User Mode

Kernel Mode

BIOS, ACPI

Platform

Hardware

Target

Application

6

2

5

3

7

4

Kernel Power

Manager

Registry

8

9

Application-launch

Event

(Button or wireless)

Platform

Hardware

(EC or chipset)

To Wakeup/Sleep

Logic

1

Infrared or

RF Receiver

Figure 5. System Wake Button-Press Event

Starting at the bottom of Figure 5:

1. The system is in an ACPI system sleep state (S1-S4). The user presses the
application-launch button or activates the wireless remote control.

2. Normal hardware mechanisms wake the system and return it to the S0 operating
state.

3. System firmware preserves the system wake source (the button that was
pressed).

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 16

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

4. When the operating system resumes execution, the ACPI driver evaluates the
_WAK method.

5. As part of the _WAK method, ASL runs a private method to determine if the
application-launch button was the system-wake source. If so, it issues a
Notify(btn, 0x02) event to the application-launch button object.

6. The ACPI driver calls a private interface into the kernel power manager to invoke
a power notification for the button-press event.

7. The kernel power manager sends an application-launch event to all registered
listeners.

8. The user-mode button agent receives the application-launch event, including the
unique instance ID of the button that was pressed. The button agent looks up the
application-launch string that is associated with this button’s instance ID.

9. The button agent then launches the appropriate application.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 17

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

System Start from S5 Button-Press Event Data Flow

Figure 6 shows the steps that are taken when the application-launch button is
pressed to start the system from the ACPI S5 soft-off state.

Platform ASL

ACPI Driver

Button Agent

User Mode

Kernel Mode

BIOS, ACPI

Platform

Hardware

Application-launch

Button

Platform

Hardware

(EC or chipset)

To Wakeup/Sleep

Logic

Target

Application

6

2
1

5

3

7
4

Kernel Power

Manager

Registry

9

10

Registry

8

Figure 6. System Power-On Button-Press Event

Starting at the bottom of Figure 6:

1. The system is in the ACPI soft off state (S5). The user presses the application-
launch button.

2. Normal hardware mechanisms start the system and return it to the S0 operating
state.

3. System firmware preserves the system startup source (the button that was
pressed).

4. As the ACPI driver initializes, it enumerates each instance of the PNP0C32 device
in the ACPI namespace. For each device that is found, ACPI adds an instance ID to
the Windows registry.

5. The ACPI driver evaluates the GHID method for each PNP0C32 object in the
namespace and stores the Usage ID in the registry.

6. In the GHID method, firmware ASL evaluates the <BTNW> proprietary method to
determine if this specific application-launch button instance started the system. If
so, firmware ASL issues a Notify(btn, 0x02) event for that device instance.

7. The ACPI driver calls a private interface into the kernel power manager to invoke
a power notification for the button-press event.

Direct Application Launch from System Startup in Windows Vista and Windows 7 - 18

March 12, 2010
© 2010 Microsoft Corporation. All rights reserved.

8. The kernel power manager sends an application-launch event to all registered
listeners.

9. The user-mode button agent receives the application-launch event, including the
unique instance ID of the button that was pressed. The button agent looks up the
application-launch string that is associated with this button’s instance ID.

10. The button agent then launches the appropriate application.

Next Steps

The direct application-launch support in Windows Vista and Windows 7, together
with industry-standard ACPI platform hardware and firmware support, provides a
simple, flexible, and powerful development framework that can be easily leveraged
to realize system-wake and application-launch scenarios, without incurring the
additional expense and complication of alternate operating system or firmware
components.

By using this infrastructure, manufacturers and system designers can use simple and
reliable mechanisms to provide value-add hardware features to their product
offerings.

Manufacturers are encouraged to:

• Consider enabling hardware buttons or wireless receivers in their platform
designs to wake and launch media or other consumer applications.

• Leverage the direct application-launch button support in Windows Vista and
Windows 7 to simplify and extend their application-launch button scenarios.

Resources

ACPI Specification – Revision 3.0
http://www.acpi.info/

ACPI / Power Management – Architecture and Driver Support
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/default.mspx

Windows SDK
http://msdn.microsoft.com/en-us/windows/bb980924.aspx

Windows Driver Kit
http://msdn.microsoft.com/en-us/library/ms794193.aspx

http://www.acpi.info/
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/default.mspx
http://msdn.microsoft.com/en-us/windows/bb980924.aspx
http://msdn.microsoft.com/en-us/library/ms794193.aspx

	Introduction
	Advantages of Direct Application Launch in Windows Vista and Windows 7
	Design Overview
	Functional Block Components
	General Design Approach and Event Flow

	Implementation Details
	Platform Hardware Support for the Application-Launch Button
	Firmware Support
	Firmware Functional Responsibilities

	ACPI Support
	Button ACPI Declaration
	ACPI Method and Object Support
	Other Firmware Changes
	ACPI Driver Support
	Button Device Objects
	Button Driver Interface Device Class

	Retrieving the Button Descriptor

	ACPI Handling of Button-Press Events
	Application-Launch Button Event Notifications to Platform Software
	User-Mode Software Notification Example
	Application-Launch Button-Event GUID
	Application-Launch Button Notification and Data Payload

	Button Agent and Application Launch
	Configuring the Target Application
	Example Configuration
	Preventing Startup of the HotStart Task

	Event Flows for Application-Launch Events
	Run-time Application Launch Event Data Flow
	Wake Button-Press Event Data Flow
	System Start from S5 Button-Press Event Data Flow

	Next Steps
	Resources

